

RICH Thermal Analysis and Test

M. Cova

RICH Requirements

Operative Temperature Range

$$[-30^{\circ}C;+50^{\circ}C]$$

Non Operative Temperature Range

$$[-35^{\circ}C;+60^{\circ}C]$$

[-30°C;+50°C] non op. range has been updated by test results

- Temperature uniformity among the PMTs grid: 15°C
- Target (for physical purposes), temperature uniformity among single PMTs grid: 6°C

RICH Thermal model

- RICH bricks on USS02
- Rich&Ecal crates radiators no more in the model

 RICH outer panels covered by MLI

RICH dissipation

- PMTs = $680 \times 26 \text{mW} = 17.7 \text{W}$
- Boards = $4 \times 2W + 4 \times 0.45W = 9.8W$
- Mass saving activity 1st step (TIM 19/01/04): FEE on the detector

 $=(1.7W+0.3W) \times 4=8W$

 Mass saving activity 2nd step (TIM 19/01/04): boards on the detector

$$=1W + 1W = 2W$$

37.5W

Thermal Analysis Results -Hot cases-

HOT cases

B-75_MPA_hot Operative

55.2°C is the maximum PMT temperature prediction

 $\Delta T=18.4$ °C

Values are maximum grid temperature for each grid. 5°C to be added to have PMT temperature

HOT cases

B-75_MPA_hot Non Operative

36.8°C is the maximum PMT temperature prediction (13.2°C margin)

B-60_MPA_hot Operative

42.4°C is the maximum PMT temperature prediction (7.6°C margin)

Grid Temperatures

 $\Delta T=14.3^{\circ}C$

Thermal Analysis Results -Cold cases-

COLD cases

B_0_MPA_cold Non Operative

-27.1°C is the minimum PMT temperature prediction

Values are minimum PMT=grid temperature for each grid

COLD cases

B_0_0_0-15_cold Non Operative

-29.5°C is the minimum PMT temperature prediction

Conclusions

HOT cases

The detector in the MPA attitude works for

$$-60^{\circ} \le \beta \le +75^{\circ}$$

and so it is ON for more than 95% of mission time.

In this range the thermal gradient inside whole detector is

$$< 15^{\circ}C$$

Conclusions

COLD cases

Two different test campaigns have been foreseen:

- 1. 8 PMTs (EM) at −40°C → completed with positive results
- 2. 50 PMTs at −35°C → to be carried out for reasonable statistic.

Depending on second test result, heaters may be required (max continuous power in the worst cold case = 25W).

Thermal test philosophy

- a) EM thermal test (8 PMTs with electronics and complete mechanics)
 - a) 7 days at +60°C
 - b) 7 days at -40°C
 - c) 8 cycles between –40°C and +60°C
- b) Qualification test (50 PMTs with electronics)
 - 7 days at +60°C
 - 7 days at -35°C
 - 8 cycles between –35°C and +60°C
- c) Acceptance test (on all the flight PMTs)
 - 7 days at +50°C
 - 7 days at -30°C
 - 8 cycles between –30°C and +50°C (TBC)

EM thermal test

Scope

- Demonstrate the capability of the PMT with their electronics to work conforming to specification requirements after having experienced the non operative temperature range of –40°C to +60°C.
- Validate the thermal model of the sub-assembly using dummy power

Test Article

- •8 complete PMT assemblies
- •Aluminum support structure

Sensors Position

Dummy power

- Real PMT dissipation
 26mW
- Dummy PMT dissipation
 1W

in order to get reliable results and allow the model correlation

→ Ongoing test

Test Profile

- •Max Op/non Op temperature = $+60^{\circ}$ C
- •Min Op/non Op temperature = -40° C

Test results

New RICH design (February 2004)

New RICH design

• Rational:

- Old Radiators now working as heat path ("heat beams")
- "Heat beams" position not optimized due to several bad contact conductance
- Bad connector and cables layout due to "old radiator" shape
- Chance to save weight thanks to thermal cross section correct positioning

Panels

Octagonal Structure thickness

Analysis Results

HOT cases

B –75_MPA_hot Operative

55.8°C is the maximum PMT temperature prediction

 $\Delta T=19.3$ °C

Values are maximum grid temperature for each grid. 5°C to be added to have PMT temperature

HOT cases

B-75_MPA_hot Non Operative

38.8°C is the maximum PMT temperature prediction (11.2°C margin)

HOT cases

B –60_MPA_hot Operative

42.7°C is the maximum PMT temperature prediction (7.3°C margin)

 $\Delta T=15.2$ °C

Grid Temperatures

COLD cases

B_0_MPA_cold Non Operative

-27.3°C is the minimum PMT temperature prediction (2.7°C margin)

Values are minimum PMT=grid temperature for each grid

Mass saving

• OLD Thermal Panels ~ 10.7 kg

Octagonal beams ~ 9.6 kg

NEW

cover panels ~ 1.4kg Δ (octagonal beams) ~ +5 kg

Octagonal beams ~ 9 kg

-4.9kg

Conclusions

The new design gives 5 kg mass saving with same thermal results, TBC by structural analysis and electronic boards design

HOT CASES

The detector in the MPA attitude works for

$$-60^{\circ} \le \beta \le +75^{\circ}$$

and so it is ON for more than 95% of time.

In this range the thermal gradient is in the worst case 15.2°C

Conclusions

COLD CASES

Depending on test result (50 PMTs at -35°C for 7 days), heaters may be required. (max continuous power in the worst cold case = 25W).